LCOV - code coverage report
Current view: top level - src/crypto - milenage.c (source / functions) Hit Total Coverage
Test: wpa_supplicant/hostapd combined for hwsim test run 1426431149 Lines: 110 127 86.6 %
Date: 2015-03-15 Functions: 6 6 100.0 %

          Line data    Source code
       1             : /*
       2             :  * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208)
       3             :  * Copyright (c) 2006-2007 <j@w1.fi>
       4             :  *
       5             :  * This software may be distributed under the terms of the BSD license.
       6             :  * See README for more details.
       7             :  *
       8             :  * This file implements an example authentication algorithm defined for 3GPP
       9             :  * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
      10             :  * EAP-AKA to be tested properly with real USIM cards.
      11             :  *
      12             :  * This implementations assumes that the r1..r5 and c1..c5 constants defined in
      13             :  * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
      14             :  * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
      15             :  * be AES (Rijndael).
      16             :  */
      17             : 
      18             : #include "includes.h"
      19             : 
      20             : #include "common.h"
      21             : #include "crypto/aes_wrap.h"
      22             : #include "milenage.h"
      23             : 
      24             : 
      25             : /**
      26             :  * milenage_f1 - Milenage f1 and f1* algorithms
      27             :  * @opc: OPc = 128-bit value derived from OP and K
      28             :  * @k: K = 128-bit subscriber key
      29             :  * @_rand: RAND = 128-bit random challenge
      30             :  * @sqn: SQN = 48-bit sequence number
      31             :  * @amf: AMF = 16-bit authentication management field
      32             :  * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL
      33             :  * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL
      34             :  * Returns: 0 on success, -1 on failure
      35             :  */
      36          89 : int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand,
      37             :                 const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s)
      38             : {
      39             :         u8 tmp1[16], tmp2[16], tmp3[16];
      40             :         int i;
      41             : 
      42             :         /* tmp1 = TEMP = E_K(RAND XOR OP_C) */
      43        1513 :         for (i = 0; i < 16; i++)
      44        1424 :                 tmp1[i] = _rand[i] ^ opc[i];
      45          89 :         if (aes_128_encrypt_block(k, tmp1, tmp1))
      46           0 :                 return -1;
      47             : 
      48             :         /* tmp2 = IN1 = SQN || AMF || SQN || AMF */
      49          89 :         os_memcpy(tmp2, sqn, 6);
      50          89 :         os_memcpy(tmp2 + 6, amf, 2);
      51          89 :         os_memcpy(tmp2 + 8, tmp2, 8);
      52             : 
      53             :         /* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
      54             : 
      55             :         /* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */
      56        1513 :         for (i = 0; i < 16; i++)
      57        1424 :                 tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];
      58             :         /* XOR with TEMP = E_K(RAND XOR OP_C) */
      59        1513 :         for (i = 0; i < 16; i++)
      60        1424 :                 tmp3[i] ^= tmp1[i];
      61             :         /* XOR with c1 (= ..00, i.e., NOP) */
      62             : 
      63             :         /* f1 || f1* = E_K(tmp3) XOR OP_c */
      64          89 :         if (aes_128_encrypt_block(k, tmp3, tmp1))
      65           0 :                 return -1;
      66        1513 :         for (i = 0; i < 16; i++)
      67        1424 :                 tmp1[i] ^= opc[i];
      68          89 :         if (mac_a)
      69          82 :                 os_memcpy(mac_a, tmp1, 8); /* f1 */
      70          89 :         if (mac_s)
      71           7 :                 os_memcpy(mac_s, tmp1 + 8, 8); /* f1* */
      72          89 :         return 0;
      73             : }
      74             : 
      75             : 
      76             : /**
      77             :  * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
      78             :  * @opc: OPc = 128-bit value derived from OP and K
      79             :  * @k: K = 128-bit subscriber key
      80             :  * @_rand: RAND = 128-bit random challenge
      81             :  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
      82             :  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
      83             :  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
      84             :  * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL
      85             :  * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL
      86             :  * Returns: 0 on success, -1 on failure
      87             :  */
      88         239 : int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand,
      89             :                    u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar)
      90             : {
      91             :         u8 tmp1[16], tmp2[16], tmp3[16];
      92             :         int i;
      93             : 
      94             :         /* tmp2 = TEMP = E_K(RAND XOR OP_C) */
      95        4063 :         for (i = 0; i < 16; i++)
      96        3824 :                 tmp1[i] = _rand[i] ^ opc[i];
      97         239 :         if (aes_128_encrypt_block(k, tmp1, tmp2))
      98           0 :                 return -1;
      99             : 
     100             :         /* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
     101             :         /* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
     102             :         /* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
     103             :         /* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
     104             : 
     105             :         /* f2 and f5 */
     106             :         /* rotate by r2 (= 0, i.e., NOP) */
     107        4063 :         for (i = 0; i < 16; i++)
     108        3824 :                 tmp1[i] = tmp2[i] ^ opc[i];
     109         239 :         tmp1[15] ^= 1; /* XOR c2 (= ..01) */
     110             :         /* f5 || f2 = E_K(tmp1) XOR OP_c */
     111         239 :         if (aes_128_encrypt_block(k, tmp1, tmp3))
     112           0 :                 return -1;
     113        4063 :         for (i = 0; i < 16; i++)
     114        3824 :                 tmp3[i] ^= opc[i];
     115         239 :         if (res)
     116         232 :                 os_memcpy(res, tmp3 + 8, 8); /* f2 */
     117         239 :         if (ak)
     118          85 :                 os_memcpy(ak, tmp3, 6); /* f5 */
     119             : 
     120             :         /* f3 */
     121         239 :         if (ck) {
     122             :                 /* rotate by r3 = 0x20 = 4 bytes */
     123        3944 :                 for (i = 0; i < 16; i++)
     124        3712 :                         tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];
     125         232 :                 tmp1[15] ^= 2; /* XOR c3 (= ..02) */
     126         232 :                 if (aes_128_encrypt_block(k, tmp1, ck))
     127           0 :                         return -1;
     128        3944 :                 for (i = 0; i < 16; i++)
     129        3712 :                         ck[i] ^= opc[i];
     130             :         }
     131             : 
     132             :         /* f4 */
     133         239 :         if (ik) {
     134             :                 /* rotate by r4 = 0x40 = 8 bytes */
     135        3944 :                 for (i = 0; i < 16; i++)
     136        3712 :                         tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];
     137         232 :                 tmp1[15] ^= 4; /* XOR c4 (= ..04) */
     138         232 :                 if (aes_128_encrypt_block(k, tmp1, ik))
     139           0 :                         return -1;
     140        3944 :                 for (i = 0; i < 16; i++)
     141        3712 :                         ik[i] ^= opc[i];
     142             :         }
     143             : 
     144             :         /* f5* */
     145         239 :         if (akstar) {
     146             :                 /* rotate by r5 = 0x60 = 12 bytes */
     147         119 :                 for (i = 0; i < 16; i++)
     148         112 :                         tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];
     149           7 :                 tmp1[15] ^= 8; /* XOR c5 (= ..08) */
     150           7 :                 if (aes_128_encrypt_block(k, tmp1, tmp1))
     151           0 :                         return -1;
     152          49 :                 for (i = 0; i < 6; i++)
     153          42 :                         akstar[i] = tmp1[i] ^ opc[i];
     154             :         }
     155             : 
     156         239 :         return 0;
     157             : }
     158             : 
     159             : 
     160             : /**
     161             :  * milenage_generate - Generate AKA AUTN,IK,CK,RES
     162             :  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
     163             :  * @amf: AMF = 16-bit authentication management field
     164             :  * @k: K = 128-bit subscriber key
     165             :  * @sqn: SQN = 48-bit sequence number
     166             :  * @_rand: RAND = 128-bit random challenge
     167             :  * @autn: Buffer for AUTN = 128-bit authentication token
     168             :  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
     169             :  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
     170             :  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
     171             :  * @res_len: Max length for res; set to used length or 0 on failure
     172             :  */
     173          49 : void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k,
     174             :                        const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik,
     175             :                        u8 *ck, u8 *res, size_t *res_len)
     176             : {
     177             :         int i;
     178             :         u8 mac_a[8], ak[6];
     179             : 
     180          49 :         if (*res_len < 8) {
     181           0 :                 *res_len = 0;
     182           0 :                 return;
     183             :         }
     184          98 :         if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) ||
     185          49 :             milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) {
     186           0 :                 *res_len = 0;
     187           0 :                 return;
     188             :         }
     189          49 :         *res_len = 8;
     190             : 
     191             :         /* AUTN = (SQN ^ AK) || AMF || MAC */
     192         343 :         for (i = 0; i < 6; i++)
     193         294 :                 autn[i] = sqn[i] ^ ak[i];
     194          49 :         os_memcpy(autn + 6, amf, 2);
     195          49 :         os_memcpy(autn + 8, mac_a, 8);
     196             : }
     197             : 
     198             : 
     199             : /**
     200             :  * milenage_auts - Milenage AUTS validation
     201             :  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
     202             :  * @k: K = 128-bit subscriber key
     203             :  * @_rand: RAND = 128-bit random challenge
     204             :  * @auts: AUTS = 112-bit authentication token from client
     205             :  * @sqn: Buffer for SQN = 48-bit sequence number
     206             :  * Returns: 0 = success (sqn filled), -1 on failure
     207             :  */
     208           4 : int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts,
     209             :                   u8 *sqn)
     210             : {
     211           4 :         u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
     212             :         u8 ak[6], mac_s[8];
     213             :         int i;
     214             : 
     215           4 :         if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
     216           0 :                 return -1;
     217          28 :         for (i = 0; i < 6; i++)
     218          24 :                 sqn[i] = auts[i] ^ ak[i];
     219           8 :         if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) ||
     220           4 :             os_memcmp_const(mac_s, auts + 6, 8) != 0)
     221           1 :                 return -1;
     222           3 :         return 0;
     223             : }
     224             : 
     225             : 
     226             : /**
     227             :  * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
     228             :  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
     229             :  * @k: K = 128-bit subscriber key
     230             :  * @_rand: RAND = 128-bit random challenge
     231             :  * @sres: Buffer for SRES = 32-bit SRES
     232             :  * @kc: Buffer for Kc = 64-bit Kc
     233             :  * Returns: 0 on success, -1 on failure
     234             :  */
     235         147 : int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc)
     236             : {
     237             :         u8 res[8], ck[16], ik[16];
     238             :         int i;
     239             : 
     240         147 :         if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL))
     241           0 :                 return -1;
     242             : 
     243        1323 :         for (i = 0; i < 8; i++)
     244        1176 :                 kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];
     245             : 
     246             : #ifdef GSM_MILENAGE_ALT_SRES
     247             :         os_memcpy(sres, res, 4);
     248             : #else /* GSM_MILENAGE_ALT_SRES */
     249         735 :         for (i = 0; i < 4; i++)
     250         588 :                 sres[i] = res[i] ^ res[i + 4];
     251             : #endif /* GSM_MILENAGE_ALT_SRES */
     252         147 :         return 0;
     253             : }
     254             : 
     255             : 
     256             : /**
     257             :  * milenage_generate - Generate AKA AUTN,IK,CK,RES
     258             :  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
     259             :  * @k: K = 128-bit subscriber key
     260             :  * @sqn: SQN = 48-bit sequence number
     261             :  * @_rand: RAND = 128-bit random challenge
     262             :  * @autn: AUTN = 128-bit authentication token
     263             :  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
     264             :  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
     265             :  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
     266             :  * @res_len: Variable that will be set to RES length
     267             :  * @auts: 112-bit buffer for AUTS
     268             :  * Returns: 0 on success, -1 on failure, or -2 on synchronization failure
     269             :  */
     270          36 : int milenage_check(const u8 *opc, const u8 *k, const u8 *sqn, const u8 *_rand,
     271             :                    const u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len,
     272             :                    u8 *auts)
     273             : {
     274             :         int i;
     275             :         u8 mac_a[8], ak[6], rx_sqn[6];
     276             :         const u8 *amf;
     277             : 
     278          36 :         wpa_hexdump(MSG_DEBUG, "Milenage: AUTN", autn, 16);
     279          36 :         wpa_hexdump(MSG_DEBUG, "Milenage: RAND", _rand, 16);
     280             : 
     281          36 :         if (milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL))
     282           0 :                 return -1;
     283             : 
     284          36 :         *res_len = 8;
     285          36 :         wpa_hexdump_key(MSG_DEBUG, "Milenage: RES", res, *res_len);
     286          36 :         wpa_hexdump_key(MSG_DEBUG, "Milenage: CK", ck, 16);
     287          36 :         wpa_hexdump_key(MSG_DEBUG, "Milenage: IK", ik, 16);
     288          36 :         wpa_hexdump_key(MSG_DEBUG, "Milenage: AK", ak, 6);
     289             : 
     290             :         /* AUTN = (SQN ^ AK) || AMF || MAC */
     291         252 :         for (i = 0; i < 6; i++)
     292         216 :                 rx_sqn[i] = autn[i] ^ ak[i];
     293          36 :         wpa_hexdump(MSG_DEBUG, "Milenage: SQN", rx_sqn, 6);
     294             : 
     295          36 :         if (os_memcmp(rx_sqn, sqn, 6) <= 0) {
     296           3 :                 u8 auts_amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
     297           3 :                 if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
     298           0 :                         return -1;
     299           3 :                 wpa_hexdump_key(MSG_DEBUG, "Milenage: AK*", ak, 6);
     300          21 :                 for (i = 0; i < 6; i++)
     301          18 :                         auts[i] = sqn[i] ^ ak[i];
     302           3 :                 if (milenage_f1(opc, k, _rand, sqn, auts_amf, NULL, auts + 6))
     303           0 :                         return -1;
     304           3 :                 wpa_hexdump(MSG_DEBUG, "Milenage: AUTS", auts, 14);
     305           3 :                 return -2;
     306             :         }
     307             : 
     308          33 :         amf = autn + 6;
     309          33 :         wpa_hexdump(MSG_DEBUG, "Milenage: AMF", amf, 2);
     310          33 :         if (milenage_f1(opc, k, _rand, rx_sqn, amf, mac_a, NULL))
     311           0 :                 return -1;
     312             : 
     313          33 :         wpa_hexdump(MSG_DEBUG, "Milenage: MAC_A", mac_a, 8);
     314             : 
     315          33 :         if (os_memcmp_const(mac_a, autn + 8, 8) != 0) {
     316           3 :                 wpa_printf(MSG_DEBUG, "Milenage: MAC mismatch");
     317           3 :                 wpa_hexdump(MSG_DEBUG, "Milenage: Received MAC_A",
     318             :                             autn + 8, 8);
     319           3 :                 return -1;
     320             :         }
     321             : 
     322          30 :         return 0;
     323             : }

Generated by: LCOV version 1.10